Los datos son el recurso estratégico del siglo XXI: registros de comportamiento, preferencias, ubicación, salud, transacciones y comunicaciones que, cuando se agregan y analizan, producen conocimiento predictivo. Controlar esos datos equivale a dirigir la atención, la economía y la toma de decisiones, tanto a escala individual como colectiva. A continuación se analiza quiénes ejercen ese control, cómo lo hacen, qué consecuencias tiene y qué herramientas existen para equilibrar el poder.
¿Qué se comprende cuando hablamos de “datos”?
Los datos incluyen:
- Datos personales: nombre, dirección, identificadores, número de documento.
- Datos de comportamiento: historial de navegación, búsquedas, clics, compras.
- Datos de localización: geolocalización de dispositivos, rutas y desplazamientos.
- Datos sensibles: salud, orientación política, creencias religiosas, biometría.
- Metadatos: cuándo, dónde y cómo se creó una interacción, que a veces revela más que el contenido.
Actores que controlan los datos
- Grandes plataformas tecnológicas: empresas dedicadas a motores de búsqueda, redes sociales, servicios de correo, comercio electrónico y sistemas operativos. Reúnen información de miles de millones de usuarios y ponen a disposición infraestructuras de análisis y publicidad.
- Corredores y agregadores de datos: compañías que adquieren, depuran y comercializan perfiles dirigidos a anunciantes, aseguradoras y diversas organizaciones, operando normalmente de manera discreta y, en muchos casos, sin que el titular sea consciente.
- Gobiernos y agencias estatales: recogen información con fines de seguridad, recaudación, salud pública e infraestructura, pudiendo obtener datos privados conforme a la ley o a través de mecanismos de vigilancia generalizada.
- Empresas del sector salud, finanzas y telecomunicaciones: administran datos altamente sensibles y cuentan con la capacidad de determinar usos tanto comerciales como institucionales.
- Pequeñas y medianas empresas y desarrolladores: capturan conjuntos de datos muy concretos, como los generados por aplicaciones de fitness o sistemas de domótica, que al combinarse aportan profundidad adicional a los perfiles.
Sistemas de supervisión
Los actores anteriores emplean diversos mecanismos para convertir datos en poder:
- Monopolio de la plataforma: a medida que crece la comunidad de usuarios, los datos ganan mayor valor y resulta cada vez más complejo para ellos cambiar a otras opciones.
- Economía de la atención: sistemas algorítmicos que ordenan contenidos con el fin de ampliar el tiempo de visualización y, en consecuencia, aumentar los ingresos por publicidad.
- Modelos predictivos y aprendizaje automático: facilitan anticipar conductas, ajustar estrategias de precios, definir segmentos de público y orientar decisiones.
- Integración vertical: compañías que abarcan hardware, software y servicios obtienen datos desde numerosos puntos dentro del ecosistema, como dispositivos, aplicaciones o la nube.
- Intercambio y venta de datos: existen mercados, tanto regulados como clandestinos, donde la información se negocia, se mezcla y circula nuevamente.
Por qué dominar los datos concede poder
- Ventaja económica: la información disponible posibilita ajustar ofertas, disminuir los gastos de captación de clientes y generar ingresos publicitarios continuos, de modo que las plataformas con amplios conjuntos de datos terminan absorbiendo buena parte del valor producido dentro de una cadena económica.
- Influencia política: la microsegmentación junto con mensajes hechos a medida favorece campañas políticas focalizadas capaces de moldear la percepción pública y modificar resultados electorales.
- Dominio de la información: administrar qué aparece y ante quién (como rankings o recomendaciones) contribuye a dirigir la conversación social y cultural.
- Seguridad y vigilancia: la disponibilidad de metadatos y comunicaciones permite instaurar vigilancia a gran escala, apoyar la prevención del delito o, bajo regímenes autoritarios, reforzar mecanismos de represión y control social.
- Discriminación algorítmica: los modelos entrenados con datos sesgados pueden intensificar brechas existentes en ámbitos como créditos, seguros, empleo o justicia.
Ejemplos destacados
- Escándalo de Cambridge Analytica: aprovechamiento indebido de datos de millones de usuarios en redes sociales para elaborar perfiles psicológicos y orientar campañas políticas, revelando cómo información aparentemente trivial puede incidir en procesos democráticos.
- Brecha de Equifax (2017): divulgación no autorizada de datos personales y financieros de cerca de 147 millones de individuos, ilustrando los peligros de concentrar información crítica en un número reducido de organizaciones.
- Clearview AI: obtención masiva de fotografías disponibles públicamente con fines de reconocimiento facial, generando preocupaciones sobre vigilancia amplia y la erosión de la privacidad.
- Sistemas de puntaje social en algunos países: combinación de datos privados y públicos para valorar la “confiabilidad” de la ciudadanía, influyendo en el acceso a diversos servicios y en las oportunidades de movilidad social.
- Compartición de datos sanitarios controversiales: convenios entre instituciones de salud y compañías tecnológicas que provocaron discusiones sobre consentimiento, beneficios reales y posibles riesgos ligados al uso comercial de información clínica.
Efectos en las personas y en la sociedad
- Privacidad erosionada: pérdida de control sobre información personal y riesgos de exposición no autorizada.
- Autonomía reducida: decisiones influenciadas por mensajes personalizados y arquitecturas de elección diseñadas para dirigir comportamientos.
- Riesgo económico: usos discriminatorios que afectan acceso a crédito, empleo o seguros.
- Fragilidad democrática: manipulación de información y polarización amplificada por burbujas algorítmicas.
- Seguridad física: vulneración de datos que revela patrones de desplazamiento, vida privada o información sensible que puede facilitar delitos.
Regulación y respuestas sociales
Las reacciones combinan marcos legales, presión pública y cambios empresariales.
- Regulaciones de protección de datos: leyes que buscan dar control al titular (derecho de acceso, rectificación, supresión, portabilidad) y exigir responsabilidad a los controladores. Ejemplos: marcos regionales que imponen sanciones y obligaciones de transparencia.
- Auditorías y rendición de cuentas: evaluación externa de algoritmos, transparencia en los modelos y auditorías independientes para detectar sesgos y riesgos.
- Movimientos de datos abiertos y soberanía de datos: iniciativas que promueven que comunidades y estados tengan control sobre datos estratégicos, especialmente en salud y recursos públicos.
- Herramientas técnicas: cifrado, anonimización diferencial, arquitecturas federadas que permiten análisis sin centralizar datos sensibles.
Acciones que están al alcance de los usuarios y las organizaciones
- Transparencia y consentimiento informado: exigir claridad sobre usos y duración del almacenamiento; limitar permisos en aplicaciones.
- Minimización de datos: las empresas deben recolectar solo lo estrictamente necesario y retenerlo por períodos limitados.
- Auditorías internas y externas: implementar revisiones de modelos y procesos para detectar sesgos y vulnerabilidades.
- Adopción de tecnologías de protección: cifrado de extremo a extremo, anonimización robusta y soluciones de aprendizaje federado cuando sea posible.
- Educación digital: formación ciudadana sobre riesgos de compartir datos y prácticas para reducir exposición (gestión de contraseñas, autenticación multifactor).
Perspectivas de riesgo y aspectos a monitorear
Con la proliferación del Internet de las cosas, la biometría y la inteligencia artificial, los riesgos se intensifican: se obtienen perfiles más detallados, se posibilita anticipar estados de ánimo o condiciones de salud y se incrementa la capacidad de influir en dinámicas sociales de manera inmediata. Resulta esencial supervisar la concentración de la infraestructura de IA y el manejo de datos sensibles que facilitan la automatización de decisiones de gran relevancia.
El dominio sobre los datos trasciende lo técnico o lo comercial, pues determina quién puede influir en preferencias, repartir oportunidades y decidir qué información llega a cada persona; cuando unos pocos concentran esos datos, surgen desequilibrios de poder que repercuten en derechos, mercados y sistemas democráticos; para afrontarlo, se requieren regulaciones sólidas, avances tecnológicos que prioricen la privacidad y una ciudadanía capaz de exigir transparencia, y solo al combinar estos factores es posible equilibrar el valor económico de los datos con la protección de la dignidad, la autonomía y la justicia social.